M1.(a) FeSO₄ + Na₂C₂O₄
$$\rightarrow$$
 FeC₂O₄ + Na₂SO₄
Allow multiples, including fractions.
Allow Fe²⁺ + C₂O₄²⁻ \rightarrow FeC₂O₄
Allow correct equation which includes water of crystallisation.

(b) M_r FeSO₄.7H₂O = 277.9 Allow if shown clearly in the calculation. Allow 278

Moles = 6.95 / 277.9 = 2.5(0) × 10⁻²

Do not penalise precision but must be to a minimum of two significant figures. Allow correct calculation using incorrect M_r. Correct answer without working scores this mark only.

(c) $3(.00) \times 10^{-2}$

(d) Theoretical mass = 2.50 × 10⁻² × 179.8 = 4.50g as long as 2.50 × 10⁻² is the smaller of parts (b) and (c) (M1) *Allow consequential answer from parts (b) and (c). Allow theoretical mass = (smaller of parts (b) and (c)) × 179.8 If larger of parts (b) and (c) used, lose M1 but can score M2. Allow answers based on moles of reactant and product.*

1

1

1

1

1

Yield = 3.31 × 100 / 4.50 = 73.6% **(M2)** Award this mark only if answer given to 3 significant figures. Correct answer without working scores this mark only, provided answer given to 3 significant figures.

	(e)	Some left in solution / some lost during filtration Do not allow 'incomplete reaction'. Do not allow 'reaction is reversible'.	1	
	(f)	MnO_4 will oxidise the iron(II) ion and the ethanedioate ion	1	
		MnO₄⁻ does not oxidise the Cu²⁺ ion / larger volume needed for iron(II) ethanedioate	1	[9]
M2. (a)	A ligan	d is an electron pair / lone pair donor Allow uses lone / electron pair to form a co-ordinate bond	1	
		A bidentate ligand donates two electron pairs (to a transition metal ion) from different atoms / two atoms (on the same molecule / ion) <i>QoL</i>	1	
	(b)	CoCl₄²⁻ diagram Tetrahedral shape	1	
			1	
		109°28' $\left[\begin{array}{c} I \\ I $	1	

Octahedral shape

90°

Six ammonia / NH₃ molecules attached to Co with 2+ charge correct Allow 180° if shown clearly on diagram

CE= 0 if wrong complex but mark on if only charge is incorrect

(c) In different complexes the <u>d</u> orbitals / <u>d</u> electrons (of the cobalt) will have different energies / <u>d</u> orbital splitting will be different

Light / energy is absorbed causing an electron to be excited

1

1

1

1

1

Different frequency / wavelength / colour of light will be absorbed / transmitted / reflected

1

(d) 1 mol of H_2O_2 oxidises 2 mol of Co^{2+} Or $H_2O_2 + 2Co^{2+} \rightarrow 2OH^- + 2Co^{3+}$

1

1

*M*_r CoSO₄.7H₂O = 281 *If M*_r wrong, max 3 for M1, M4, M5 Moles $H_2O_2 = 0.03512 / 2 = 0.01756$ M4 is method mark for (M3) / 2 (also scores M1)

Volume H_2O_2 = (moles × 1000) / concentration = 0.01756 × 1000) / 5.00

 $= 3.51 \text{ cm}^3 / (3.51 \times 10^{-3} \text{ dm}^3)$

Units essential for answer M5 is method mark for (M4) x 1000 / 5 Allow 3.4 to 3.6 cm³ If no 2:1 ratio or ratio incorrect Max 3 for M2, M3 & M5 Note: Answer of 7 cm³ scores 3 for M2, M3, M5 (and any other wrong ratio max 3) Answer of 16.8 cm³ scores 3 for M1, M4, M5 (and any other wrong M, max 3) Answer of 33.5 cm³ scores 1 for M5 only (so wrong M, AND wrong ratio max 1)

Orange dichromate

M3.(a)

Allow max 2 for three correct colours not identified to species but in correct order

Changes to purple / green / ruby / red-violet / violet Chromium(III) (Note green complex can be [Cr(H₂O)₅Cl]²⁺ etc) Do not allow green with another colour

That changes further to blue Chromium(II) Allow max 1 for two correct colours not identified but in correct order [16]

1

1

1

1

1

	$[Cr_2O_7]^{2*}$ + 14H ⁺ + 3Zn \rightarrow 2Cr ³⁺ + 3Zn ²⁺ + 7H ₂ O	
	$2Cr^{3*} + Zn \rightarrow 2Cr^{2*} + Zn^{2*} /$ Ignore any further reduction of Cr^{2*}	1
	$[Cr_{2}O_{7}]^{2} + 14H^{+} + 4Zn \rightarrow 2Cr^{2+} + 4Zn^{2+} + 7H_{2}O$ Ignore additional steps e.g. formation of CrO ₄ ²	1
(b)	Green precipitate	1
	(Dissolves to form a) green solution Solution can be implied if 'dissolves Istated	1
	$[Cr(H_2O)_6]^{3*} + 3OH^- \rightarrow Cr(H_2O)_3(OH)_3 + 3H_2O$ Penalise Cr(OH)_3 once only	1
	$Cr(H_2O)_3(OH)_3 + 3OH^- \rightarrow [Cr(OH)_6]^3 + 3H_2O$ $Allow [Cr(H_2O)_6]^{3*} + 6OH^- \rightarrow [Cr(OH)_6]^{3*} + 6H_2O$ $Allow formation of [Cr(H_2O)_2(OH)_4]^- and [Cr(H_2O)(OH)_6]^{2*} in$ balanced equations Ignore state symbols, mark independently	1
(c)	(ligand) substitution / replacement / exchange Allow nucleophilic substitution	1
	The energy levels/gaps of the <u>d</u> electrons are <u>different</u> (for each complex) Ignore any reference to emission of light	

So a <u>different</u> wavelength/frequency/colour/energy of light is absorbed (when d electrons are excited)

OR light is absorbed and a different wavelength/frequency/colour/energy (of light) is transmitted/reflected

(d)
$$E O_2 (/ H_2 O) > E Cr^{3+} (/ Cr^{2+}) / e.m.f = 1.67 V$$

Allow $E(cell) = 1.67$

So Cr^{2*} ions are oxidised by oxygen/air Allow any equation of the form: $Cr^{2*} + O_2 \rightarrow Cr^{3*}$

and CO_2

Can score M3, M4, M5 in equations even if unbalanced

Cr(III) differs from Cr(II) because it is acidic / forms H⁺ ions

because Cr³ ion polarises <u>water</u> Ignore charge/size ratio and mass/charge

[19]

1

1

1

1

1

1

M4. (a)	Co-oro	dinate / d	ative / dative covalent / dative co-ordinate Do not allow covalent alone	1
	(b)	(lone) p	pair of electrons on <u>oxygen/O</u> If co-ordination to O ² , CE=0	1
		forms c	o-ordinate bond with <u>Fe</u> / donates electron pair to <u>Fe</u> 'Pair of electrons on O donated to Fe <i>⊡</i> scores M1 and M2	1
	(c)	180° / 1	180 / 90 Allow any angle between 85 and 95 Do not allow 120 or any other incorrect angle Ignore units eg °C	1
	(d)	(i) 3	: 5 / 5 FeC₂O₄ reacts with 3 MnO₄⁻ Can be equation showing correct ratio	1
		(ii) M M	1 Moles of MnO₄ ⁻ per titration = 22.35 × 0.0193/1000 = <u>4.31 × 10⁻⁴</u> ethod marks for each of the next steps (no arithmetic error allowed for Allow <u>4.3 × 10⁻⁴</u> (2 sig figs) Allow other ratios as follows: eg from given ratio of 7/3	or M2): 1
		М	 2 moles of FeC₂O₄= ratio from (d)(i) used correctly × 4.31 × 10⁻⁴ M2 = 7/3 × 4.31 × 10⁻⁴ = 1.006 × 10⁻³ 	

М3	moles of FeC₂O₄ in 250 cm³ = M2 ans × 10
	M3 = $1.006 \times 10^{-3} \times 10 = 1.006 \times 10^{-2}$
M4	Mass of $FeC_2O_4.2H_2O = M3$ ans × 179.8
	$M4 = 1.006 \times 10^{-2} \times 179.8 = 1.81 \text{ g}$

(OR for M4 max moles of FeC₂O₄.2H₂O = 1.381/179.8 (= 7.68 × 10⁻³) for M5 % of FeC₂O₄.2H₂O = (M3 ans/above M4ans) × 100) eg using correct ratio 5/3: Moles of FeC₂O₄ = 5/3 × 4.31 × 10⁻⁴ = 7.19 × 10⁻⁴ Moles of FeC₂O₄ = 5/3 × 4.31 × 10⁻⁴ = 7.19 × 10⁻⁴ Mass of FeC₂O₄ in 250 cm³ = 7.19 × 10⁻⁴ × 10 = 7.19 × 10⁻³ Mass of FeC₂O₄.2H₂O = 7.19 × 10⁻³ × 179.8 = 1.29 g % of FeC₂O₄.2H₂O = 1.29 × 100/1.381 = 93.4 (allow 92.4 to 94.4) Note correct answer (92.4 to 94.4) scores 5 marks *Allow consequentially on candidate's ratio* eg **M2** = 5/2 × 4.31 × 10⁻⁴ = 1.078 × 10⁻³

 $M3 = 1.0078 \times 10^{-3} \times 10 = 1.078 \times 10^{-2}$ $M4 = 1.078 \times 10^{-2} \times 179.8 = 1.94 \text{ g}$ $M5 = 1.94 \times 100/1.381 = 140 \% (139 \text{ to } 141)$ Other ratios give the following final % values
1:1 gives 56.1% (55.6 to 56.6)
5:1 gives 281% (278 to 284)
5:4 gives 70.2% (69.2 to 71.2)

[10]

1

1